产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

新澳门大门大全
+
  • 新澳门大门大全

8arm PEG Norbornene (tripentaerythritol)

产品代号:

8ARM(TP)-PEG-NB

产品纯度:

≥ 90%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

20000 Da

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技提供高品质八臂聚乙二醇降冰片烯(三季戊四醇核))产品,产品取代率≥90%。

      键凯科技的盐酸盐8臂PEG降冰片烯(三季戊四醇)衍生物可以交联成可降解的PEG水凝胶。以三聚季戊四醇为核聚合而成的8ARM(TP)-PEG原料比以六聚甘油为核聚合而成的8ARM-PEG具有分散度低,分子量更精确的优势。PEG水凝胶在医疗设备及再生医学中具有多种应用,尤其适用于药物缓释、2D与3D细胞培养及伤口的密封与愈合等领域。

      键凯科技提供8ARM(TP)-NB-20K产品 1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的8ARM(TP)-NB产品,如你需要请与我司[email protected]联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  •   References:

      1. Dietrich, M., et al., Guiding 3D cell migration in deformed synthetic hydrogel microstructures, Soft matter, 2018, 14(15), pp.2816-2826.

      2. Shukla, V., et al., Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine, Annals of biomedical engineering, 2018, 46(1), pp.197-207.

      3. Dorsey, T.B., et al., Evaluation of photochemistry reaction kinetics to pattern bioactive proteins on hydrogels for biological applications, Bioactive Materials, 2017.

      4. Zhang, J., et al., A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture, Stem Cell Reports, 2017, 8:4, p. 907-918.

      5. Holmes, R., et al., Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties, Polymers, 2017, 9(6):226.

      6. Valdez, J., et al., On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks, Biomaterials, 2017, v. 130, p. 90-103.

      7. Regier, M.C., et al., The Influence of Biomaterials on Cytokine Production in 3D Cultures. Biomacromolecules. 2017, 18(3):709-18.

      8. Zanotelli, M.R., et al., Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels, Acta biomaterialia, 2016.

      9. Darling, N.J., et al., Thiol-Maleimide Reaction Speed Effects on Hydrogel Homogeneity, Biomaterials, 2015.

      10. Le, N.N.T., et al., Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior, Acta Biomaterialia, 2015.

      11. Pellett, S., et al., Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin, Scientific Reports, 2015, 5:14566.

           12. Luo, Y., et al., Light-induced dynamic RGD pattern for sequential modulation of macrophage phenotypes, Bioactive Materials, 2021, V. 6(11), P. 4065-4072.

      13.Sofman, M., et al., A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting, Biomaterials, 2021, 264, 120231

           14.Wilson, RL, et al, Protein-functionalized poly (ethylene glycol) hydrogels as scaffolds for monolayer organoid culture. Tissue Engineering Part C: Methods. 2021, 27(1):12-23.

           15.Khang, A, et al., On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction. Journal of Biomechanical Engineering. 2021, 143(9):094503.

           16.Grewal, MG, et al., User-defined, temporal presentation of bioactive molecules on hydrogel substrates using supramolecular coiled coil complexes. Biomaterials Science. 2021.

           17.Grigoryan, B, et al., Development, characterization, and applications of multi-material stereolithography bioprinting. Scientific reports. 2021, 11(1):1-3.

           18.Anandakrishnan, N, et al., Fast Stereolithography Printing of Large‐Scale Biocompatible Hydrogel Models. Advanced Healthcare Materials. 2021, 10(10):2002103.

           19.Ortiz-Cárdenas, J.E., et al., Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. Organs-on-a-Chip, 2022, 100018.

           20.Khang, A., et al., Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior. Acta Biomaterialia, 2022.

           21.Kim MH, et al., Poly (ethylene glycol)–Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. ACS Applied Materials & Interfaces. 2023.

产品询价