产品中心
联系我们
销售专用:
地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层
- 产品描述
- 参考文献
-
键凯科技提供高品质四臂聚乙二醇巯基产品,产品取代率>90%。
键凯科技的4臂巯基可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。
键凯科技提供4ARM-SH分子量5000Da,10000Da, 20000 Da产品 1克和10克包装。
键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。
键凯科技同时提供其他分子量的4ARM-SH产品,如你需要请与我司[email protected]联系。
键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。
-
References:
- Dos Santos, B.P., et al., Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications, Journal of biotechnology, 2019, 298:35-44.
- Atallah, P., et al., Charge-tuning of glycosaminoglycan-based hydrogels to program cytokine sequestration, Faraday Discussions, 2019.
- Wang, L., et al., Dual‐Functional Dextran‐PEG Hydrogel as an Antimicrobial Biomedical Material. Macromolecular bioscience, 2018, 18(2), p.1700325.
- Hung-Yi Liu, H.-Y., et al., Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma, Biomaterials, 2018, V. 160, P. 24-36.
- Lewis, K.J., et al., Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system, Biomaterials, 2018.
- Santa Chalarca, C.F., et al., Reactive polymer zwitterions: Sulfonium sulfonates. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(1):83-92.
- Greene, T., et al., Comparative study of visible light polymerized gelatin hydrogels for 3D culture of hepatic progenitor cells. Journal of Applied Polymer Science, 2017, 134(11).
- Robinson, K.G., et al., Reduced Arterial Elasticity due to Surgical Skeletonization is Ameliorated by Abluminal PEG Hydrogel, Bioengineering & Translational Medicine, 2017.
- Wang, X., et al., A Polydopamine Nanoparticle Knotted Poly (ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-Photothermal Therapy, Chemistry of Materials, 2017.
- DiVito, K.A., et al., Microfabricated blood vessels undergo neoangiogenesis, Biomaterials, 2017.
- Scott, R.A., et al., Aortic adventitial fibroblast sensitivity to mitogen activated protein kinase inhibitors depends on substrate stiffness, Biomaterials, 2017.
- Maturavongsadit, P., et al., Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels, ACS applied materials & interfaces, 2017, 9(4):3318-29.
- Zhang, K., et al., Hydrogels with a Memory: Dual-Responsive, Organometallic Poly (ionic liquid) s with Hysteretic Volume-Phase Transition, Journal of the American Chemical Society, 2017.
- DiVito, K.A., et al., Data characterizing microfabricated human blood vessels created via hydrodynamic focusing, Data in Brief, 2017, 14, P. 156-162.
- Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, 104:1, p. 113–123.
- McGann, C. L., et al., Thiol-ene Photocrosslinking of Cytocompatible Resilin-Like Polypeptide-PEG Hydrogels. Macromol. Biosci., 2016, 16: 129–138.
- Liang, Y., et al., Liposome-crosslinked hybrid hydrogels for glutathione-triggered delivery of multiple cargo molecules, Biomacromolecules, 2016.
- Mahadevaiah, S., et al., Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells, Biomaterials, 2015, 62, P. 24-34.
- Greene, T., et al., Modular gelatin hydrogels formed by orthogonal thiol-ene photochemistry for 3D hepatocyte culture, Society for Biomaterials, 2015.
- Cambria, E., et al., Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation, Biomacromolecules, 2015, 16 (8), 2316-2326.
- Lewis, K. J. R., et al., In vitro model alveoli from photodegradable microsphere templates, Biomater. Sci., 2015, 3, 821-832.
- Greene, T., et al., Modular Cross-Linking of Gelatin-Based Thiol–Norbornene Hydrogels for in Vitro 3D Culture of Hepatocellular Carcinoma Cells, ACS Biomaterials Science & Engineering, 2015, 1 (12), 1314-1323.
- McGann, C.L., Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications, 2015.
- Missirlis, D., et al., Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration, Biomacromolecules, 2014, 15(1), pp 195–205.
- Daniele, M.A., et al., Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 2014, 35(6): p. 1845-1856.
- Sawicki, L.A., et al., Design of thiol–ene photoclick hydrogels using facile techniques for cell culture applications, Biomater. Sci., 2014, 2, 1612-1626.
- Liang, Y., et al., Multifunctional lipid-coated polymer nanogels crosslinked by photo-triggered Michael-type addition, Polym. Chem., 2014, 5, 1728-1736.
- Kharkar, P.M., et al., Dually degradable click hydrogels for controlled degradation and protein release, J. Mater. Chem. B, 2014, 2, 5511-5521.
- Tao, Y., Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material, Acta Biomaterialia, 2013. 9: p. 5022–5030
- Qin, H., et al., Gadolinium(III)–gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation, Nanomedicine, 2013, 8(10), 1611–1624.
- Tong, X., et al., A new end group structure of poly(ethylene glycol) for hydrolysis-resistant biomaterials. J. Polym. Sci. A Polym. Chem., 2011, 49: 1513–1516.
- McKee, C., et al., Mesenchymal stem cells transplanted with self-assembling scaffolds differentiated to regenerate nucleus pulposus in an ex vivo model of degenerative disc disease, Applied Materials Today, 2020, V. 18.
- Wang, J., et al., An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides,Journal of Controlled Release, 2021, 330, P. 575-586
- DiVito, KA, et al., Hydrodynamic Focusing-Enabled Blood Vessel Fabrication for in Vitro Modeling of Neural Surrogates. Journal of Medical and Biological Engineering. 2021, 1-4.
- Paez, JI, et al., Thiol-methylsulfone-based hydrogels for cell encapsulation: reactivity optimization of aryl-methylsulfone substrate for fine-tunable gelation rate and improved stability. Biomacromolecules. 2021.
- Dargaville, TR, et al., Poly (2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules. 2021, 22(4):1590-9.
- Aluri, KC, et al., Thiosulfinates as a Novel Class of Disulfide Cleavable Cross-Linkers for Rapid Hydrogel Synthesis. Bioconjugate Chemistry. 2021, 32(3):584-94.
- Li, J., et al., Network-Based Redox Communication Between Abiotic Interactive Materials, iScience, 2022.
- Du, EY, et al., A 3D bioprintable hydrogel with tuneable stiffness for exploring cells encapsulated in matrices of differing stiffnesses. bioRxiv. 2022.
-
Hu, P., et al., Tumor microenvironment responsive-multifunctional nanocomposites knotted injectable hydrogels for enhanced synergistic chemodynamic and chemo-photothermal therapies, Materials & Design, V. 225, 2023.
-
Genç, H., et al., Adjusting Degree of Modification and Composition of gelAGE-Based Hydrogels Improves Long-Term Survival and Function of Primary Human Fibroblasts and Endothelial Cells in 3D Cultures, Biomacromolecules, 24(3), p. 1497-1510, 2023.
-
Brown, T., et al., Design and development of microformulations for rapid release of small molecules and oligonucleotides, European Journal of Pharmaceutical Sciences, 188, 2023.
-
Meisenhelter, J.E., et al., Impact of Peptide Length and Solution Conditions on Tetrameric Coiled Coil Formation, Biomacromolecules, 2024, V. 25, 6. Keywords: tetrafunctional PEG-thiol
-
Laura A. Milton, L.A., et al., Liver click dECM hydrogels for engineering hepatic microenvironments, Acta Biomaterialia, 2024. Keywords: Decellularized extracellular matrix; Liver; Michael-type addition; Hydrogel; 3D cell culture; 4-arm PEG-SH; 4-arm PEG-MAL
产品询价