产品中心
联系我们
销售专用:
地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层
Methoxy PEG Propionaldehyde
产品代号:
M-PEG-ALD
产品纯度:
≥ 95%
包装规格:
1g, 10g, 100g等(特殊包装需收取分装费用)
分子量:
5000 Da-40000 Da,等
关键词:
科研客户小批量一键采购地址(小于5克)
- 产品描述
- 参考文献
-
甲氧基聚乙二醇丙醛是一个N-端氨基反应的聚乙二醇活性衍生物。可对蛋白、多肽或其他生物仿制品中的氨基进行定点修饰,条件温和在PH=5-8还原剂存在下即可进行。
键凯科技提供M-ALD分子量的5000 Da,10000 Da,20000 Da,30000 Da,40000 Da 的产品1克和10克包装。
键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。
键凯科技同时提供其他分子量的M-ALD产品,如你需要请与我司[email protected]联系。
键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系.
-
References:
- Zaghmi, A., et al., Determination of the degree of PEGylation of protein bioconjugates using data from proton nuclear magnetic resonance spectroscopy, Data in Brief, V. 25, 2019, 104037.
- Zaghmi, A., et al., Mechanisms of activity loss for a multi-PEGylated protein by experiment and simulation, Materials Today Chemistry, 2019, 12:121-31.
- Hernandez-Vargas, G., et al., Thermo-separating polymer-based aqueous two-phase systems for the recovery of PEGylated lysozyme species, Journal of Chromatography B., 2019, 1105:120-8.
- Cheng, Y., et al., Doxorubicin Loaded Tumor-Triggered Targeting Ammonium Bicarbonate Liposomes for Tumor-Specific Drug Delivery, Colloids and Surfaces B: Biointerfaces, 2019.
- Gertler, A., et al., Pegylated Human Leptin D23L Mutant–Preparation and Biological Activity In Vitro and in Vivo in Male ob/ob Mice, Endocrinology, 2019.
- Liu, S., et al., Acetazolamide‐Loaded pH‐Responsive Nanoparticles Alleviating Tumor Acidosis to Enhance Chemotherapy Effects, Macromolecular bioscience, 2019, 9(2).
- Abbasi, S., et al., Polyacrylamide–b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: Effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, v. 537, p. 217-226.
- Behi, J., et al., Optimization of PEGylation reaction time and molar ratio of rhG-CSF toward increasing bioactive potency of monoPEGylated protein, International Journal of Biological Macromolecules, 2018, V. 109, P. 888-895.
- Mejia‐Manzano, L.A., et al., Optimized purification of mono‐PEGylated lysozyme by Heparin Affinity Chromatography using Response Surface Methodology, Journal of Chemical Technology and Biotechnology, 2017.
- Zhao, Y.Z., et al., PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA, Journal of Biotechnology, 2017.
- Mejia‐Manzano, L.A., et al., Recovery of PEGylated and native lysozyme using an in situ aqueous two‐phase system directly from the PEGylation reaction, Journal of Chemical Technology and Biotechnology, 2017.
- Zhang, L., et al., Suppression for lung metastasis by depletion of collagen I and lysyl oxidase via losartan assisted with paclitaxel-loaded pH-sensitive liposomes in breast cancer, Drug Delivery, 2016.
- Mayolo‐Deloisa, K., et al., PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports. Biotechnology progress, 2016.
- Zhang, Y., et al., Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific Reports, 2016, 6:21225.
- Mata-Gomez, M.A., et al., Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease A in a microdevice with insulating structures, Biomicrofluidics, 2016, 10(3): 033106.
- Abbasi, S., et al., Design and cell cytotoxicity assessment of palmitoylated polyethylene glycol-grafted chitosan as nanomicelle carrier for paclitaxel. J. Appl. Polym. Sci., 2015, 133, 43233.
- Mayolo-Deloisa, K., et al., Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity, Journal of Molecular Recognition, 2015, 28(3): 173-179.
- Wu, L., et al., N-Terminal Modification with Pseudo-Bifunctional PEG-Hexadecane Markedly Improves the Pharmacological Profile of Human Growth Hormone, Molecular Pharmaceutics, 2015.
- Zhang, L., et al., High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer, ACS Applied Materials & Interfaces, 2015.
- Mata-Gómez, M. A., et al., Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts. Electrophoresis, 2015.
- Parikh, H., et al., Improving Properties of Recombinant SsoPox by Site-Specific Pegylation, Protein and Peptide Letters, 2015, 22:12.
- Tiwari, D., et al., Efficient Purification of rhG-CSF and its PEGylated Forms and Evaluation for In Vitro Activities, Protein and Peptide Letters, 2015, 22:10, pp. 877-884(8).
- Schulz, J. D., Site-Specific Polymer Conjugation Stabilizes Therapeutic Enzymes in the Gastrointestinal Tract. Adv. Mater., 2015.
- Wu, L., Phenyl Amide Linker Improves the Pharmacokinetics and Pharmacodynamics of N-Terminally Mono-PEGylated Human Growth Hormone, Mol. Pharmaceutics, 2014, 11(9), p: 3080–3089.
- Xue, X., et al., Heat treatment increases the bioactivity of C-terminally PEGylated staphylokinase. Process Biochemistry, 2014. 49(7): p. 1092-1096.
- Pink, A., et al., Purification, characterization and plasma half-life of PEGylated soluble recombinant non-HA-binding CD44, BioDrugs, 2014, 28(4) p:393-402.
- Yu, W., et al., PEGylated recombinant human interferon-ω as a long-acting antiviral agent: Structure, antiviral activity and pharmacokinetics. Antiviral Research, 2014, 108: p. 142-147.
- Li, R., et al., Preparation and Characterization of Biological Non-toxic Hybrid Nanoparticles Based on Lactide and Poly(ethylene glycol) Loading Docetaxel for Anticancer Drug Delivery, Chinese Journal of Chemical Engineering, 2014, 22:11–12, P. 1357-1362.
- Martinez, A.H., et al., Chemical grafting of Sepharose 6B and its use in the purification of PEGylated RNase A, Separation and Purification Technology, 2014, 136, P. 190-198.
- Mu Q, et al., Molecular Insight into the Steric Shielding Effect of PEG on the Conjugated Staphylokinase: Biochemical Characterization and Molecular Dynamics Simulation, PLoS ONE, 2013, 8(7): e68559.
- Wu, L., et al., N-terminal mono-PEGylation of growth hormone antagonist: Correlation of PEG size and pharmacodynamic behavior, International journal of pharmaceutics, 2013, 453.2 : 533-540.
- Tian, H., et al., PEGylation enhancement of pH stability of uricase via inhibitive tetramer dissociation, Journal of Pharmacy and Pharmacology, 2013, 65.1 : 53-63.
- Galindo‐López, M., et al., Practical non‐chromatography strategies for the potential separation of PEGylated RNase A conjugates, Journal of Chemical Technology and Biotechnology, 2013, 88.1 : 49-54.
- Gonzalez‐Valdez, J., et al., Effects of chemical modifications in the partition behavior of proteins in aqueous two‐phase systems: A case study with RNase A., Biotechnology progress, 2013, 29.2 : 378-385.
- Niv-Spector, L., Preparation and characterization of mouse IL-22 and its four single-amino-acid muteins that act as IL-22 receptor-1 antagonists, Protein Engineering, Design & Selection, 2012, 25(8). p:397-404.
- Mayolo-Deloisa, C., et al., Hydrophobic interaction chromatography for purification of monoPEGylated RNase A, J. Chromatogr. A, 2012, 1242 p: 11–16.
- Niv-Spector, L., et al., Large-scale preparation and characterization of non-pegylated and pegylated superactive ovine leptin antagonist, Protein Expression and Purification, 2012, 81:2, p. 186-192.
- Gonzalez-Valdez , J., et al., Quantification of RNase A and Its PEGylated Conjugates on Polymer-Salt Rich Environments Using UV Spectrophotometry, Analytical Letters, 2011, 44:5.
- Shpilman, M., et al., Development and Characterization of High Affinity Leptins and Leptin Antagonists, The Journal of Biological Chemistry, 2011, 286(6), p: 4429 –4442.
- Top, A., et al., Conformational and Aggregation Properties of a PEGylated Alanine-Rich Polypeptide, Biomacromolecules, 2011, 12(6), pp 2184–2192.
- Wang, J., et al., Kinetic and stoichiometric analysis of the modification process for N-terminal PEGylation of staphylokinase, Analytical Biochemistry, 2011, 412: 1, P. 114-116.
- Gonzalez-Valdez, J., et al., Potential application of aqueous two-phase systems for the fractionation of RNase A and α-Lactalbumin from their PEGylated conjugates, J. Chem. Technol. Biotechnol., 2011, 86: 26–33.
- Wang, Y-J., et al., PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: A comparison with glycosylated erythropoietin, Journal of Controlled Release, 2010, 145:3, p. 306-313.
- Elinav, E., et al., Pegylated Leptin Antagonist Is a Potent Orexigenic Agent: Preparation and Mechanism of Activity, Endocrinology, 2009, 150(7), 3083–3091.
- http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000420/WC500025941.pdf.
- Kateja, N., et al., Development of an integrated continuous PEGylation and purification Process for granulocyte colony stimulating factor, Journal of Biotechnology, 2020, 322, p. 79-89.
- Hebbi, V., et al., Process analytical technology application for protein PEGylation using near infrared spectroscopy: G-CSF as a case study, Journal of Biotechnology, 2021, 325, P. 303-311.
-
Luo, S., et al., A new site-specific monoPEGylated β-lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity, Food Chemistry, 2021, 343, 128402.
-
Tao, Y., et al., MiR-1909-5p targeting GPX4 affects the progression of aortic dissection by modulating nicotine-induced ferroptosis, Food and Chemical Toxicology, 2024, V. 191. Keywords: Aortic dissection; Nicotine; Endothelial cells; miR-1909-5p; GPX4; Methoxy PEG propionaldehyde
产品询价