产品中心
联系我们
销售专用:
地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层
Methoxy PEG Acetic Acid
产品代号:
M-PEG-CM
产品纯度:
≥ 95%
包装规格:
包装规格 : 1g, 10g, 100g等(特殊包装需收取分装费用)
分子量:
5000 Da-20000 Da,等
关键词:
所属分类:
科研客户小批量一键采购地址(小于5克)
- 产品描述
- 参考文献
-
甲氧基聚乙二醇在PH=7-8的环境中可以与赖氨酸等分子中的氨基进行酰胺化反应,它比甲氧基聚乙二醇羧甲基琥珀酰亚胺酯更稳定。
键凯科技提供M-CM分子量的5000 Da,10000 Da,20000 Da 的产品1克和10克包装。
键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。
键凯科技同时提供其他分子量的M-CM产品,如你需要请与我司[email protected]联系。
键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。
-
References:
1. Javanmardi, S., et al., Redox-Sensitive, PEG-Shielded Carboxymethyl PEI Nanogels Silencing MicroRNA-21, Sensitizes Resistant Ovarian Cancer Cells to Cisplatin, Asian Journal of Pharmaceutical Sciences, 2018.
2. Lassenberger, A., et al., Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Applied Materials & Interfaces, 2017.
3. Dai, L., et al., Self-assembled PEG–carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery. RSC Advances, 2017, 7(5):2905-12.
4. Zhao, L., et al., An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration. Journal of Controlled Release, 2017.
5. Jones, S.K., et al., Revisiting the value of competition assays in folate receptor-mediated drug delivery, Biomaterials, 2017.
6. Gal, N., et al., Interaction of size-tailored PEGylated iron oxide nanoparticles with lipid membranes and cells. ACS Biomaterials Science & Engineering. 2017, 3(3):249-59.
7. Wang, Y., et al., Self-assembled nanoparticles based on poly (ethylene glycol)–oleanolic acid conjugates for co-delivery of anticancer drugs, RSC Advances, 2017, 7(47):29591-8.
8. Chen, G., et al., Unimolecular Micelle-Based Hybrid System for Perivascular Drug Delivery Produces Long-Term Efficacy for Neointima Attenuation in Rats, Biomacromolecules, 2017.
9. Farvadi, F., et al., Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization. Artificial cells, nanomedicine, and biotechnology, 2016, 1-9.
10. Li, Y., et al., A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy, RSC Adv., 2016, 6, 6516-6522.
11. Jones, S.K, et al., Folate Receptor Targeted Delivery of siRNA and Paclitaxel to Ovarian Cancer Cells via Folate Conjugated Triblock Copolymer to Overcome TLR4 Driven Chemotherapy Resistance, Biomacromolecules, 2016, 17 (1), 76-87.
12. Chaudhary, R., et al., Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. Journal of Nanobiotechnology, 2016, 14(1):1-7.
13. Abolmaali, S.S., et al., Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells. Materials Science and Engineering, 2016, C, 62, pp.897-907.
14. Brinkman, A.M., et al., Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials, 2016, 101:20-31.
15. Li, C. et al., A self-assembled nanoparticle platform based on poly(ethylene glycol)–diosgenin conjugates for co-delivery of anticancer drugs, RSC Adv., 2015, 5, 74828-74834.
16. Najafi, H., et al., Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine, Macromolecular Research, 2015, 23:7, p. 618-627.
17. Saraswathy, M., et al., Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy, Colloids and Surfaces B: Biointerfaces, 2015, 126, p. 590-597.
18. Chen, G., et al., Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging, Biomaterials 2015, 47, P. 41-50.
19. Xiong, D, et al., GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells, International Journal of Pharmaceutics, 2015, 496:2, p. 699-708.
20. Guo, J., Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging, ACS Appl. Mater. Interfaces, 2014, 6(24), p: 21769–21779.
21. Xu, P., et al., Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials, 2014, 35(26), p. 7574-7587.
22. Gajbhiye, V., et al., Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives. Nanoscale, 2014, 6(1), p. 521-31.
23. Abolmaali, S.S., et al., Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links, International Journal of Nanomedicine, 2014, 9:2833-2848.
24. Guo, J., et al., Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles, Biomaterials, 2013, 34(33), p: 8323–8332.
25. Gao, X., et al., Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine, 2012, 7: p. 4037-51.
26. Jiang, X., et al., Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors, Biomaterials, 2011, 32(35), p:9457–9469.
27.Shirasu, T., et al., Neointima abating and endothelium preserving — An adventitia-localized nanoformulation to inhibit the epigenetic writer DOT1L, Biomaterials, 301, 2023.
产品询价