产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

新澳门大门大全
+
  • 新澳门大门大全

4arm PEG Amine (pentaerythritol), HCl Salt

产品代号:

4ARM-PEG-NH2HCl

产品纯度:

≥ 95%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

2000 Da, 5000 Da, 10000Da, 20000 Da,40000 Da等

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技提供高品质4ARM-NH2HCl-20K四臂聚乙二醇胺盐酸盐产品,产品取代率≥ 95%。

      键凯科技的4臂胺可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。

      键凯科技提供4ARM-NH2HCl分子量2000 Da, 5000 Da, 10000Da, 20000 Da,40000 Da的产品 1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的4ARM-NH2HCl产品,如你需要请与我司[email protected]联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  •   References:

      1. Zhan, H., et al., A Hybrid Peptide Amphiphile Fiber PEG Hydrogel Matrix for 3D Cell Culture, Advanced Functional Materials, 2019.

      2. Bizeau, J., et al., Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers, Colloids and Surfaces B: Biointerfaces, 2017, 159, P. 30-38.

      3. Sharma, S., et al., A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments, Biomaterials, 2017, 143, P. 17-28.

      4. Tardy, B.L., et al., Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017.

      5. Hu, J., et al., A thermo-degradable hydrogel with light-tunable degradation and drug release, Biomaterials, 2017, 112, p. 133-140.

      6. Aliperta, R., et al., Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy, Scientific Reports, 2017, 7.

      7. Li Y, et al., Water-dispersible graphene/amphiphilic pyrene derivative nanocomposite: High AuNPs loading capacity for CEA electrochemical immunosensing, Sensors and Actuators B: Chemical, 2017.

      8. Racine, L., et al., Design of interpenetrating chitosan and poly (ethylene glycol) sponges for potential drug delivery applications, Carbohydrate Polymers, 2017, 170:166-75.

      9. Rehmann, M., et al., Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation, J. Biomed. Mater. Res. A, 2016.

      10. Borg, D.J., et al., Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells, Acta Biomaterialia, 2016.

      11. Zoetebier, B., Functional macromolecules and smart polymer networks for ion separation, reduction and delivery, Diss., 2016.

      12. Henise, J.. et al., Biodegradable Tetra-PEG Hydrogels as Carriers for a Releasable Drug Delivery System, Bioconjugate Chem., 2015, 26 (2), pp 270–278.

      13. Jonker, A. M., et al., A Fast and Activatable Cross-Linking Strategy for Hydrogel Formation, Advanced Materials, 2015, 27(7): 1235-1240.

      14. Zhang, N., et al., Magnetic Nanocomposite Hydrogel for Potential Cartilage Tissue Engineering: Synthesis, Characterization, and Cytocompatibility with Bone Marrow Derived Mesenchymal Stem Cells, ACS Applied Materials & Interfaces, 2015, 7 (37), 20987-20998.

      15. Truong, V.X., et al., Photodegradable Gelatin-Based Hydrogels Prepared by Bioorthogonal Click Chemistry for Cell Encapsulation and Release, Biomacromolecules, 2015, 16 (7), 2246-2253.

      16. Learsch, R., Engineering mechanical dissipation in solid poly(ethylene glycol) hydrogels with bio-inspired metal-coordinate crosslinks, 2015, MIT.

      17. Cheng, X.Q., et al., Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics, Journal of Membrane Science, 2015, V. 493, P. 156-166.

      18. Truong, V. X., et al., Nitrile Oxide-Norbornene Cycloaddition as a Bioorthogonal Crosslinking Reaction for the Preparation of Hydrogels, Macromol. Rapid Commun., 2015, 36: 1729–1734.

      19. Houbenov, N., et al., Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale, Nature Communications, 2014, 5:4043.

      20. Myers, B.K., et al., The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Analytica Chimica Acta, 2014, 808(0): p. 175-189.

      21. Hao, Y., et al., Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 2014, 10(1): p. 104-114.

      22. Xu, J., E. Feng, and J. Song, Bioorthogonally Cross-Linked Hydrogel Network with Precisely Controlled Disintegration Time over a Broad Range. Journal of the American Chemical Society, 2014, 136(11): p. 4105-4108.

      23. McKinnon, D.D., et al., Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies. Chemistry of Materials, 2014, 26(7): p. 2382-2387.

      24. Ki, C.S., et al., Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance, Biomaterials, 2014, 35(36), p: 9668-9677.

      25. McKinnon, D.D., et al., Design and Characterization of a Synthetically Accessible, Photodegradable Hydrogel for User-Directed Formation of Neural Networks, Biomacromolecules, 2014, 15, 2808−2816.

      26. Jonker, A.M., et al., A Fast and Activatable Cross-Linking Strategy for Hydrogel Formation, Advanced Materials, 2014, 27(7), 1235-1240.

      27. Shih, H., et al.,Visible-Light-Mediated Thiol-Ene Hydrogelation Using Eosin-Y as the Only Photoinitiator, Macromolecular Rapid Communications, 2013, 34(3): 269-273.

      28. Ashley, G.W., et al., Hydrogel drug delivery system with predictable and tunable drug release and degradation rates, PNAS, 2013, 110(6) 2318-2323.

      29. Maitz, M.F., et al., Bio-responsive polymer hydrogels homeostatically regulate blood coagulation, Nature Commun, 2013, 4.

      30. Kretlow, James D., Biomaterial-based strategies for craniofacial tissue engineering, Doctoral Thesis, Rice University, 2010.

      31. Murphy, J.L., et al., Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds, Biomacromolecules, 2010, 11(11), pp 2976–2984.

      32、Ding, Y. et al, Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells, Acta Biomaterialia, 2020, V. 105, P. 68-77.

      33、Newland, B., et al., Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers, MethodsX, 2020, V.7.

           34、Baker, A., et al., Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute, Biomaterials, 2021, V. 271.

      34、Newland, B., et al., Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis, Carbohydrate Polymers, 2020, 245, 116504.

      35、Lee, Y.Y., et al, Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm, Biomaterials, 2021, 267, 120389.

           36、Zhao, D., et al., Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol–Gel–Sol Transition Dependent on Subtle Manipulation of Side Groups. Biomacromolecules. 2021.

           37、Sharma, S, et al., The effects of processing variables on electrospun poly (ethylene glycol) fibrous hydrogels formed from the thiol‐norbornene click reaction. Journal of Applied Polymer Science. 2021, 138(32):50786.

           38、Schirmer, L, et al, Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing. Advanced Science. 2021, 2100293.

           39、Kim, S, et al., In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nature communications. 2021, 12(1):1-0.

           40、Song, J, et al, Influence of Poly (ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle–Immune Cell Interactions in Human Blood. ACS nano. 2021.

           41.Si, X., et al., Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy, Journal of Controlled Release, V. 353, 2023, P. 289-302.

          42.Zou, Z., et al., Injectable antibacterial tissue-adhesive hydrogel based on biocompatible o-phthalaldehyde/amine crosslinking for efficient treatment of infected wounds, Biomaterials, 301, 2023.

          43.Paganella, L. G., et al., Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels, Biomaterials Advances, 2024, V. 163. Keywords: Mechanobiology; Hydrogels; 3D culture; Fibroblasts; Matrix; 4-arm PEG-NH2HCl

          44.Alsharabasy, A.M., et al., Iron protoporphyrin IX-hyaluronan hydrogel-supported luminol chemiluminescence for the detection of nitric oxide in physiological solutions, Talanta, 2024, V. 278. Keywords: Nitric oxide; Hyaluronic acid hydrogel; Hemin; Chemiluminescence; Nitrosylation; Metalloporphyrin-based oxidation; 4-arm-PEG-NH2

          45.Paganella, L. G., et al., Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels, Biomaterials Advances, 163, 2024.

          46.Recalde Phillips, S. Y., et al., Impact of Annealing Chemistry on the Properties and Performance of Microporous Annealed Particle Hydrogels, Biomacromolecules, 2024.

产品询价