产品中心
联系我们
销售专用:
地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层
- 产品描述
- 参考文献
-
键凯科技提供高品质4ARM-ACLT-20K四臂聚乙二醇丙烯酸酯产品,产品取代率≥95%。
键凯科技的4臂丙烯酸脂可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。
键凯科技提供4ARM-ACLT分子量10000Da, 20000 Da产品 1克和10克包装。
键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。
键凯科技同时提供其他分子量的4ARM-ACLT产品,如你需要请与我司[email protected]联系。
键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。
-
References:
1. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, Vol. 67, P. 42-52.
2. Imaninezhad, M., et al, Cell Microencapsulation in Polyethylene Glycol Hydrogel Microspheres Using Electrohydrodynamic Spraying, Methods Mol Biol, 2017.
3. Jain, E., et al., Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker, Journal of Materials Chemistry B., 2017.
4. Casey, J., et al., 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth, Biomedical Materials, 2017, 12(2):025009.
5. Qayyum, A.S., et al., Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation, Biofabrication, 2017, 9(2):025019.
6. Grindy, S.C., et al., Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light, Soft Matter., 2017.
7. Yue, X., et al., Transcriptome Profiling of 3D Co-cultured Cardiomyocytes and Endothelial Cells under Oxidative Stress Using a Photocrosslinkable Hydrogel System, Acta biomaterialia, 2017.
8. Jia,W., et al., Direct 3D bioprinting of perfusable vascular constructs using a blend bioink, Biomaterials, 2016, 106, p. 58-68.
9. Shah, K., et al., Development and characterization of polyethylene glycol–carbon nanotube hydrogel composite, J. Mater. Chem. B, 2015, 3, 7950-7962.
10. Legros, C., Engineering of poly(2-oxazoline)s for a potential use in biomedical applications, University of Waterloo, Université de Liege and Université de Bordeaux, 2015.
11. Schukur, L., et al., Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels. Adv Healthc Mater, 2013, 2(1): p. 195-205.
12. Sugiura, S., et al., Dynamic 3D micropatterned cell co-cultures within photocurable and chemically degradable hydrogels, J Tissue Eng Regen Med, 2013.
13. Pedron, S., et al., Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid, Biomaterials, 2013, 34(30), P. 7408-7417.
14.Kwak, H., et al., Colorimetric assay of tyrosinase inhibition using melanocyte laden hydrogel fabricated by digital light processing printing, Journal of Industrial and Engineering Chemistry, 2020, 84, p. 252-259.
15、Sun, X., et al., Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus, Bioactive Materials, 6(3), 2021, P. 757-769.
16、Uppal, G., et al., Tissue Failure Propagation as Mediated by Circulatory Flow, Biophysical Journal, 2020, 119(12), P. 2573-2583.
17、Ma, Z., et al., 3D bioprinting of proangiogenic constructs with induced immunomodulatory microenvironments through a dual cross-linking procedure using laponite incorporated bioink, Composites Part B: Engineering, 2022, 229.
18.Giliomee, J., et al., Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels. ACS omega. 2022.
19.Ma, X., et al., Multifunctional injectable hydrogel promotes functional recovery after stroke by modulating microglial polarization, angiogenesis and neuroplasticity, Chemical Engineering Journal, V. 464, 2023.
产品询价